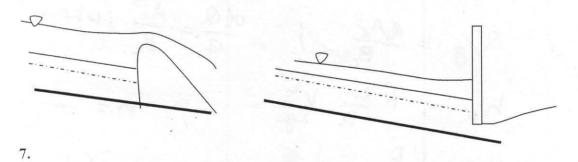
University of Asia Pacific

Department of Civil Engineering

Final Examination Fall 2012

Program: B.Sc. Engineering (Civil)

	Cou	urse title: Open Channel Flow Course code: CE	361		
	Tin	Time: 3 hours Total Marks: 100			
	Ans	swer any FIVE out of SEVEN questions. Each question has 20 marks. The figures in the right			
	maı	rgin indicate full marks.			
	1.	the common of th			
	a)	Define the following terms:	<u>6</u>		
		a. Manning's coefficient b. Normal depth c. Chezy's C			
	b)	State the characteristics of uniform flow in an open channel.	3		
c) Water flows at a velocity of 1 m/s in an open channel under uniform flow co					
	longitudinal slope of the channel is 0.0016 and n=0.02. Compute the normal depth of flow whe				
		channel is trapezoidal with b= 6 m and s=2.	<u>5</u>		
	d)	A rectangular channel has a bottom width of 5 m and Manning's coefficient n=0.025. The channel			
		lies on a slope of 1 in 1000. Determine the critical slope when discharge is 20 m ³ /s.	<u>6</u>		
		president in the control of the cont			
	2.	to the discrete this built dispublicate to well administration and a first the dispublic or section (i).			
	a)	An open channel with concrete lining (d_{50} = 1.5mm) is laid on a slope of 0.1%. The channel is			
		trapezoidal with bottom width of 3.5m and side slope s=2. If the depth of flow is 2.1m, fir	d the		
		uniform flow Q, Chezy's coefficient 'C' and friction factor 'f'.	<u>6</u>		
	b)	Differentiate between 'section factor' and 'conveyance' for uniform flow in an open channel.	<u>4</u>		
	c)	An unlined irrigation channel (n=0.025) is trapezoidal and has a bottom width of 7m, side slop	oes of		
		:1, and depth of flow of 2m. The longitudinal slope of the canal is 0.0005. It is proposed to line the			
		canal with concrete (n=0.013). Compute the discharge when only sides are lined with concrete.	<u>6</u>		
	d)	List the factors that affect the Manning's coefficient 'n'.	<u>4</u>		


3.			
	a)	What is a lined channel? What are the reasons for lining a channel?	<u>5</u>
	b)	A lined channel (n=0.015) is to be laid on a slope of 1 in 2500. The side slope of the char	inel
		is to be maintained at 1.5:1. Determine the dimensions of a trapezoidal section with round	ded
		corners to carry a discharge of m ³ /s when the maximum permissible velocity is 2 m/s.	7
	c)	Define a best hydraulic section. Why do you think it is not always possible to find a best	
		hydraulic section?	4
	d)	Show that the best hydraulic triangular section is one half of a square.	4
4.			
	a)	Define the following terms:	<u>6</u>
		a. Maximum permissible velocity	
		b. Non-silting velocity	
		c. Freeboard	
	b)	A trapezoidal channel is to be laid on a slope of 1 in 1000 and carry a discharge of	
		20 m ³ /s. It is to be excavated in earth containing slightly rounded coarse non-cohesive pa	rticles
		with d_{75} = 3 cm and n= 0.025. Determine the section dimensions of the channel using the	
		method by Lane.	<u>6</u>
	c)	What is 'angle of repose'? Why critical shear stress is important for channel design?	<u>4</u>
	d)	A horizontal trapezoidal channel having bottom width b= 5.5m, s=2 carries a discharge	
		of 130 m ³ /s at a depth of 1.1 m. Compute the downstream depth that will form a hydraul	ic
		jump. Find the energy loss in the hydraulic jump.	<u>4</u>
5.		to control outside within of John and gide slope 192, if the denitrol thew to a con-	
	a)	Write down the characteristics of 'Gradually Varied flow".	<u>4</u>
	b)	Derive the following equation for gradually varied flow in an open prismatic channel. St	ate
		the assumptions you made to derive the equation.	<u>6</u>
		$dy/dx = (S_o - S_f)/(1 - Fr^2)$	
	c)	In terms of the above equation, how do you explain 'backwater curve' and	
		"drawdown curve"?	3

d) A rectangular channel with b=4 m, and n=0.015 carries a discharge of $18 \text{ m}^3/\text{s}$. Identify the flow profiles produced in the channel for the following changes in the channel bottom slope: $S_o = 0.004 \text{ to } S_o = 0.009$

a) Sketch the possible water surface profiles in the following cases:

6

- a. Horizontal slope Mild slope --- Critical slope
- b. Steep slope --- Critical slope --- Mild slope
- c. Mild slope --- Milder slope Steep slope
- A trapezoidal channel having b=5m, s=2, n=0.02 and S_o=0.002 carries a discharge of 48.67 m³/s.
 A dam constructed across the channel raises the water level to a depth of 5 m immediately upstream of it. How far upstream or downstream from the dam will the depth be 4.75m?
 Use the direct step method.
- c) Define 'tailwater depth'. Using sketches, describe the importance of 'tailwater depth' in hydraulic jump with respect to downstream water depth y₂.
- d) What do you understand by 'control section'? Indicate control sections in the following figures.

- a) When does a hydraulic jump take place in an open channel? Write down some of the practical applications of a hydraulic jump.
- b) The depth and velocity at the foot of an overflow spillway are 0.5m and 15.50m/s respectively. What tailwater depth is needed to form a hydraulic jump? If a jump is formed, determine the type of jump, the height of jump, the length of jump, and the energy loss in the jump as a percentage of the initial energy.

 6
- c) A rectangular channel is 1.5 m wide, and inclined at an angle of 4.0 degree with the horizontal. The channel carries a discharge of $0.75 \text{ m}^3/\text{s}$ at a vertical depth (h₁) of 0.05 m. If a hydraulic jump occurs in this channel, compute the sequent depth, length of jump and height of jump. $\underline{6}$
- d) State the differences between steady jump, weak jump and strong jump. 4

CE361

2.
$$A = (b+sh)h$$
; $P = b+2\sqrt{1+s^2}h$ $b=B$

B = $b+2sh$;

$$B = b + 2 sh i$$

3. $A = sh^2 ; P = (2\sqrt{1+s^2})*h ; B = 2sh is Is$

4.
$$h = do \left[1 - \left(os \left(\frac{\omega}{2} \right) \right] \frac{1}{2}$$

$$A = \left(o - sin \omega \right) \frac{1}{2} \frac{1}{2$$

5.
$$Q^{2}/g = \frac{4A_{e}^{3}}{B_{c}}$$
; $\frac{dQ}{g} = \frac{A_{c}^{2}}{B_{c}}$ (when $d \neq 1.0$)

6.
$$h_f = f \frac{1}{D} \frac{V^2}{2g}$$
; $n = \frac{dso}{21.1}$

13.
$$A = h^2 \left(\phi + \cot \phi \right)$$

$$P = 2h \left(\phi + \cot \phi \right)$$

$$P = 2h \left(\varphi + \cot \varphi \right)$$

$$A = bh + h^{2} \left(\varphi + \cot \varphi \right)$$

$$P = b + 2h \left(\varphi + \cot \varphi \right)$$

15 Best hydraulie Sections

BD A P Rectangle 242 100 by h/2 Triangle h2 212h trapetoid V3h~ 434/3 34/4 2134 Cincle Th2/2 2h Th/4 Th

16. For a trapezoidal sentrain best hydrautic Section!

$$A = (2\sqrt{1+s^2} - s)h^2$$

$$b = 2(\sqrt{1+s^2} - s)h$$

$$P = 2h(\sqrt{1+s^2})*2 - s)$$

17, Frodible Channel:

permission inches)

$$\Rightarrow Sf = (Sf_1 + Sf_2)/2$$

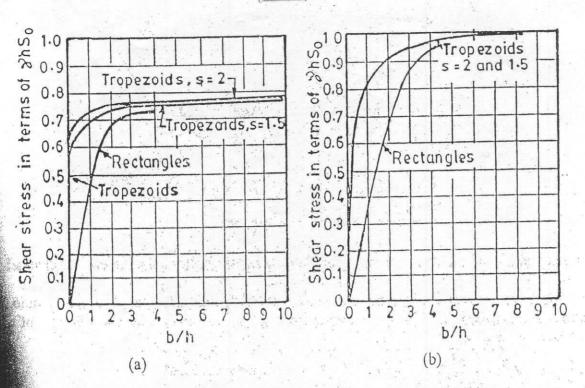
$$\Rightarrow \chi_2 = \chi_1 + \frac{E_2 - E_1}{S_0 - Sf}$$

$$18, \frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 26^2 - 1} \right)$$

 $\frac{1}{\sqrt{2}} = \frac{1}{2} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{2} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{1+3} G^2 - 1 \right)$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{$

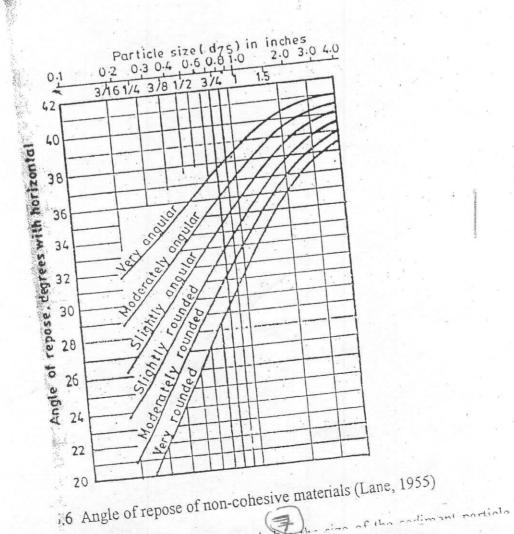
21.
$$\frac{y_2}{y_1} = \frac{1}{2} (\sqrt{1+8F_{r_1}^2} - 1)$$

1
$$\frac{y_1}{y_2} = \frac{1}{2} \left(\sqrt{1+3R_2^2} - 1 \right)$$


22.
$$h_{L} = \frac{(y_{L} - y_{I})^{3}}{4y_{I}y_{L}}$$

23.
$$\frac{L_{j}'}{4!} = 9.75 (Fr_{i}-1)^{101}$$

23.
$$\frac{1}{4!} = \frac{4 \cdot t^{3} (1 - 1)}{(1 + 8 \cdot R_{1}^{2})^{3/2} + 4 \cdot R_{1}^{2}}$$
24. $\frac{E_{2}}{E_{1}} = \frac{(1 + 8 \cdot R_{1}^{2})^{3/2} + 4 \cdot R_{1}^{2}}{8 \cdot R_{1}^{2} + (2 + R_{1}^{2})}$


$$Fr^2 = \frac{Q^2B}{gA^3}$$

g. 5. 4 Maximum shear stresses on (a) sides and (b) bottom of trapezoidal channels

Ctrace Ratio

