University of Asia Pacific Department of Basic Sciences & Humanities Semester Final Examination, Fall - 2012

Program: B.Sc. Engineering (Civil, 1st year/2nd semester)

Course Title: Mathematics II Course Code: MTH 103 Time: 3 hours Full Marks: 150

There are two sections in the question paper namely "SECTION A" and "SECTION B". You have to answer from both sections according to the instruction mentioned in each section.

SECTION A

	There are FOUR questions in this section. Answer any THREE .	
1. ((a) What do you know about gradient, divergence and curl? Find the directional derivatives of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ in the direction $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$.	10
((b) If $U = 3x^2y$, $V = xz^2 - 2y$, evaluate grad [(grad U). (grad V)].	10
((c) Show that $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$ is a conservative force field.	5
2. ((a) Prove that the curl of the gradient of scalar function ϕ is zero and also the divergence of the vector A is zero.	5
((b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	10
((c) Given the force $\mathbf{F} = xy \mathbf{i} - y^2 \mathbf{j}$, find the work done by the path given by $x = 2t^3$, $y = t^2$ from $(0, 0)$ to $(2, 1)$.	10
3. (a	(a) Define surface integral. Show that $\iint_{S} F.ndS = \frac{3}{2} \text{ where } \mathbf{F} = 4xz \mathbf{i} - y^2 \mathbf{j} + yz \mathbf{k} \text{ and}$	dS
	is the surface of the cube bounded by the planes, $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.	13
(b	Evaluate $\oint_C (y^2 dx + x^2 dy)$ where C is the triangle with vertices $(0, 0), (1, 0), (1, 1)$	
4. (a	a) If the vector field is given by $\mathbf{F} = (2x - y + z)\mathbf{i} + (x + y - z^2)\mathbf{j} + (3x - 2y + 4z)\mathbf{k}$, evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, $z = 0$.	12 13
(l	b) Let $\phi = y^2 z$ and V denote the region bounded by the plane $x + 4y + 2z = 4$, $x = 0$, $z = 0$. Evaluate $\iint \phi dV$.	12

SECTION B

There are FOUR questions in this section. Answer any THREE.

- 5. (a) State Gauss's Divergence Theorem. Verify it for $\underline{F} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ taken over the cube $0 \le x, y, z \le 1$.
 - (b) State Green's theorem for a plane. Using Green's theorem evaluate $\oint_C (2xy x^2) dx + (x + y^2) dy$, where C is the closed curve of the region bounded by the $y = x^2$ and $y^2 = x$.
- 6. (a) State Stoke's theorem. Using Stoke's theorem or otherwise evaluate $\oint_C \underline{F} \cdot d\underline{r}$ where $\underline{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ taken round the rectangle bounded by the lines $x = \pm a, \quad y = 0, \ y = b$.
 - (b) State Gauss divergence theorem. Use Divergence theorem to evaluate $\iint_{S} \underline{F} \cdot \underline{n} \, dS \text{ where } \mathbf{F} = 4x \, \mathbf{i} 2y^2 \, \mathbf{j} + z^2 \, \mathbf{k} \text{ and } S \text{ is the surface bounded by the region}$ $x^2 + y^2 = 4, \ z = 0, \text{ and } z = 3.$
- 7. (a) Find the angle between the planes 2x y + z = 6 and x + y + 2z = 7. If a line makes angles α , β , γ with the axes, show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
 - (b) Show that the four points (-3, 2, 5), (0, 1, 3), (5, 4, 2) and (7, 0, -1) lie on a plane.
 - (c) Find the equation of the plane through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane x + 6y + 6z = 9.
- 8. (a) Find the equation of the plane through the intersection of the planes x-2y+3z+4=0 and 2x-3y+4z-7=0 and the point (1,-1,1).
 - (b) Find the equation of the line perpendicular to both the line $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3}$, $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$ and passing through their intersection.
 - (c) Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}.$