University of Asia Pacific Department of Basic Sciences and Humanities Semester Final Examination, Spring 2013 Program: B.Sc Engineering (Civil, 1st year/1st semester)

Course Title: Mathematics I

Course Code: MTH 101

Time: 3 Hours

Full Marks: 150

N.B.: Answer 6 questions taking any 3 questions from each group. Figures in the right margin indicate the marks of the respective questions.

GROUP-A

Q1.	(a) State and prove Rolle's theorem.	12.5
	(b) Verify this theorem for the function $f(x) = (x-2)^2 + 2$ on $(0, 4)$.	12.5
Q2.	(a) State and prove Lagrange's Mean value theorem (MVT).	12.5
	(b) Verify this theorem for $f(x) = x^3 - x - 4$ on the interval [-1, 2].	12.5
Q3.	(a) Find the nth derivative of $f(x) = \sin(ax + b)$	8
	(b) State and prove Leibnitz's theorem.	8
	(c) If $y = (\sin^{-1} x)^2$ then show that	9
	$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0.$	
Q4.	(a) Let $f(x) = 1 - 4x - x^2$. Find the intervals on which the function $f(x)$ is increasing, decreasing, concave up and concave down.	12.5
	(b) Find the local extrema of $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 5$.	12.5
	GROUP-B	
Q5.	(a) State Taylor's theorem with remainder. Use Taylor's theorem to expand $f(x) = \cos x$ in powers of x with the remainder term.	12.5
	(b) State and prove L'Hospital's rule. Apply this rule to evaluate $\lim_{x \to 1} \left(\frac{\tan x - \sin x}{2x^3} \right).$	12.5

Q6. Integrate the following

(i)
$$\int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} dx$$
 (ii) $\int \frac{dx}{(e^x + e^{-x})^2}$ (iii) $\int \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$

- (iv) $\int \frac{dx}{2x^2 + x + 1}$ (v) $\int \cos^7 x \, dx$
- Q7. (a) State the fundamental theorem of calculus.
 - (b) Evaluate (i) $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4\cos x}$ (ii) $\int_{0}^{1} \frac{dx}{3 + x^{2}}$.

25

- Q8. (a) Find the area of the region enclosed by the curves $y^2 = 8x$ and $x^2 = 8y$.
 - (b) Find the area of the region bounded by $x^2 = y$, x = y 6.
 - (c) Find the area of the region bounded by $x = y^2$, y = 2x 2.

University of Asia Pacific Department of Basic Sciences and Humanities Semester Final Examination, Spring 2013 Program: B.Sc Engineering (Civil, 1st year/1st semester)

Course Title: Mathematics I Time: 3 Hours

Course Code: MTH 101

Full Marks: 150

N.B.: Answer 6 questions taking any 3 questions from each group. Figures in the right margin indicate the marks of the respective questions.

GROUP-A

Q1.	(a) State and prove Rolle's theorem.	12.5
	(b) Verify this theorem for the function $f(x) = (x-2)^2 + 2$ on $(0, 4)$.	12.5
Q2.	(a) State and prove Lagrange's Mean value theorem (MVT).	12.5
	(b) Verify this theorem for $f(x) = x^3 - x - 4$ on the interval [-1, 2].	12.5
Q3.	(a) Find the nth derivative of $f(x) = \sin(ax + b)$	8
	(b) State and prove Leibnitz's theorem.	8
	(c) If $y = (\sin^{-1} x)^2$ then show that	9
	$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0.$	
Q4.	(a) Let $f(x) = 1 - 4x - x^2$. Find the intervals on which the function $f(x)$ is increasing, decreasing, concave up and concave down.	12.5
	(b) Find the local extrema of $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 5$.	12.5
	GROUP-B	
Q5.	(a) State Taylor's theorem with remainder. Use Taylor's theorem to expand $f(x) = \cos x$ in powers of x with the remainder term.	12.5
	(b) State and prove L'Hospital's rule. Apply this rule to evaluate $\lim_{x \to 1} \left(\frac{\tan x - \sin x}{2x^3} \right).$	12.5

Q6. Integrate the following

(i)
$$\int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} dx$$
 (ii)
$$\int \frac{dx}{\left(e^x + e^{-x}\right)^2}$$
 (iii)
$$\int \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$$

25

- (iv) $\int \frac{dx}{2x^2 + x + 1}$ (v) $\int \cos^7 x \, dx$
- Q7. (a) State the fundamental theorem of calculus.
 - (b) Evaluate (i) $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4\cos x}$ (ii) $\int_{0}^{1} \frac{dx}{3 + x^{2}}$.
- Q8. (a) Find the area of the region enclosed by the curves $y^2 = 8x$ and $x^2 = 8y$.
 - (b) Find the area of the region bounded by $x^2 = y$, x = y 6.
 - (c) Find the area of the region bounded by $x = y^2$, y = 2x 2.